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Abstract—The boundary integral equations, which give the relation between the crack opening displace-
ment and traction on the surface of a crack embedded in an infinite isotropic elastic body are formulated.
The integral equations are transformed into spherical and cylindrical coordinates in the cases of cracks
curved in the shape of spherical and cylindrical surfaces respectively, so that these boundary integral
equations may be converted into a system of algebraic equations by the boundary element method. The
dependence of stress-intensity factors on the curvature of crack has been numerically calculated for the
spherical crack with circular contour under a constant foad.

1. INTRODUCTION

The boundary integral equations for the investigation of the state of stress in an infinite body
with a crack are formulated. Special attention is devoted to cracks curved in the shape of a
spherical and cylindrical surface. Cracks of this kind can appear in bodies as a result of
propagation of a flat three-dimensional crack subjected to mixed mode I, Il and III loads when
the trajectory of crack growth is curved, i.e. it does not lie in the plane of initial crack{1}. Up to
now, works on curved cracks have been restricted to two-dimensional cracks[2, 3]. Cotterell
and Rice[3] have investigated the dependence of stress-intensity factors K; and Kj; on the
curvature of cracks in two-dimensional case.

In this paper the dependence of the stress-intensity factors on the curvature of three-
dimensional crack is discussed using the boundary element method (BEM)[4]. The boundary
integral equations (BIE) are formulated by Somigliana method. These integral equations determine
the dependence between the crack opening displacement and tractions on the surface of a crack
embedded in an infinite elastic medium[7]. In the case of cracks curved in the shape of a spherical
and cylindrical surfaces, the BIE are rewritten in terms of spherical and cylindrical coordinates
respectively. Having known the crack opening displacement, as a solution of the derived BIE, one
can use the Somigliana formula for evaluation of the displacement field at an arbitrary inner point
of the body. Numerical calculation of the dependence of stress-intensity factors on the curvature
of spherical crack with circular contour has been carried out in the case of constant loading on the
crack surface.

The conventional 3-dimensional boundary integral approach[4] cannot be used in this
problem because of non-unique dependence of the solution on the state of loading of the crack
surface[11]. The general formulation like that of Lachat and Watson[12] in which quadratic
isoparametric elements are used to approximate curved surface can be used in the case of a
finite body.

2. FORMULATION OF BOUNDARY INTEGRAL EQUATION

In this section the boundary integral equations for unknown displacements on the surface of
a crack in infinite elastic medium are concisely derived.

Let us consider the infinite elastic medium. The classical equations of elastostatics for
displacement field u,(x) are Navier's equations

uf.ﬁ+(t—2v)ui.a+%&=o. G,i=1,23) M

where X(x) are components of body forces, » is Poisson’s ratio and y is Lame’s constant. The
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usual notation is used. Partial differentiation with respect to Descartes coordinates is indicated
by a comma in front of the suffix and repeated suffixes are to be summed.

The response to the concentrated body force X(x)= ed(x~ ) acting at point 5 is the
displacement field

ui(x) = Uy(n - x)e; )

where

Uin-x)= - [3-4v)8;+ rir) (3)

|
16mu(l - v)
is the familiar Kelvin's solution and
r= (x; = m)x; — m).

Tractions £;(x) on an arbitrary surface S with the unit normal n(x) may be expressed in terms of
the displacement field u#,(x) by Hooke’s law

tx) = g (xmx) = Ty (n,, 3,)u(x) 4

where

Ti(n, 8) = ﬂ»[ﬂr(x) 849 ""1—_27% ni{x)d; + nx(X)t?i},

a
9= aX,"

is the so-called ‘“‘stress operator.”
Inserting (2) into (4), we obtain tractions

ti(x) = 7‘:’il((nxs "x) l]/k(" - x)ei = Tii(nx» ”n- x)ei (5)

corresponding to the body force Xi(x)= ¢5(x—n). The fundamental tractions Tj(n,, n—x)
associated with the fundamental displacement field U,(n—x) are given byT(n,n-x)=

Tilny, 3) Up(p - %) = - g;}f_z—:')p {gf [6.-,- +3 l—i—_%;] + ni(x)r,; — ".‘(X)f,,'}
I ranl®). ®)

an

The displacement vector u,(x) at an arbitrary point x of the region D can be expressed in terms
of surface tractions #,(n) and displacements u, (%) by the Somigliana formula

ui(x) = L [t () Us(n —x) — () Ty (n,, n -~ x)1dS, )

where S is the boundary surface of the region D.
In considered problem, the surface S consists of the crack surface S = S5, U S¢,, where S¢,
are parts of Ljapunov surfaces differing only in their unit normals

n*(n)=-n(q). ®)

The relation of symmetry

Ui(n,x)|st, = Ua(n, 0)| _

r
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follows directly from the equation (3). We shall consider the symmetric crack loading

te(mls:, = =~ sz,
Then the first integral in eqn (7) vanishes, i.e.

L t(mUs(n =) dS, =0. )

The displacement field u;(x) at any point x € D can be expressed through displacements on the
crack surface or through crack opening displacement Ay (n)

u(x) = - [s U () Ty, 0 - 1) dS,

=- [, AunTun, n-2 45, (10

where

Aug(n) = u(n)ls:, — w()ls;,.
The relation of symmetry
Ta(ne 7= )s:, = = Tuln, n~x)s;,
that follows from eqns (6) and (8), has been used in eqn (10).

Let x> { € S in eqn (10). According to limit behaviour of the double layer potentials[6) we
obtain the boundary integral equation

340 =- [ woTatn,n-0s, (an

This equation, however, cannot be used %o calculate the displacements i,{n) on the surface of
the crack, as this one does not depend on the loading of the crack surface.

Applying the stress operator T, (n,, 3,) to eqn (10) and using the relation (6), we obtain the
following expression for tractions at x€ D

@) == Tina 2 [ wa(m) il 39) Uyt - as, (1)

In order to calculate the unknown surface displacements, the limit passage x— { € S must be
performed in eqn (12). Some steps of this operation are included in the Appendix. The result is
the following boundary integral equation

)= -&—‘-ﬂ*s ﬂa (_ %) IS N %:{4»'5;,‘&«:;!',, +3rin(Akper + Axir,)

+(1=20)[Axry + Axlir, + 1 (Bxhe + BB} dS, 13
where
Axcly = n(m)Au(m) — n(m)Au;;(n)
r={¢-ql

The last integral equation determines the dependence between tractions #({) on the crack
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surface and crack opening displacement Au;(n). The integrals in (13) exist in the sense of the
Cauchy principle value[6].

The integral equations have been derived for an infinite isotropic elastic medium containing
a symmetrically loaded crack with arbitrary Ljapunov surfaces S7,. These equations have the
simplest form when the cracks lie in a plane, e.g. (x,, x,). Interaction between two penny-shaped
cracks was investigated[7] by using these equations. The rest of this paper is devoted to
axially-symmetric cracks.

3. SPHERICAL CRACK WITH CIRCULAR CONTOUR

' Spherical coordinates (p, 9, ¢) are appropriate in this particular case. The Descartes coor-
dinates (7, 1, m3) of arbitrary point n €S}, are given by the transformation relations

m=psindcosg
7, = psind sin ¢
n3=pcos 9
and p = const,
¢ €(0;27),3 €(0; 9y).

Let the spherical coordinates of the point { € S be (p, 6, ¢). Then, we can write the following
apparent relations

= [(sin 8 cos ¢ — sin & cos @)+ (sin 6 sin ¢ — sin O sin @) + (cos 8 — cos §)%'?

© i~

r= Q:_"h =€(sin 6 cos ¢ —sindcos¢,sinhsing —sindsing,cosf—cosd) (19)

n= (9, ¢) =(sin J cos ¢, sin & sin ¢, cos ).

The Descartes components of the gradient of the crack opening displacement Au; (), defined
on the crack surface, can be expressed in terms of dAu/dd and dAu/d¢ as

| sin
A i - "—".i"
Uiy Ay pcosﬁcos«p psind 0
_ 1 . cos ¢ JAy
Au;; |=} Au p cos ¥sing psin 9 T (16)
| aAui
Au; Ay, ——sind 0 —_
U3 n T, o

The integration element dS, = p”sin 3 d9 de. In such a way all the quantities of equation (13)
are expressed as functions dependent on two variables 9, ¢. An appropriate choice of nodal
points is important for numerical solution of these integral equations by BEM. The grid of
nodal points is not regular in the band & €(0;3¢), ¢ €(0;27). That is why the new variables
&, & are introduced. The coordinate of any inner point of the surface element are

1& = 02=l Na(gl’ 52)'801 (173)

4
= 2=l Na(fh §2)‘Pa (]7b)

&L.&EECLD
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Fig. 1. Spherical crack with circular contour.

where 8,, ¢, are coordinates of the ath nodal point of the surface element and

Ni=SU+EXI 4D, Ny=(1-6X1- &)

No= 1= 6001 +8), Ne=3(+6X1-£) ()

are so-called shape function. Transformation matrix J~', determining the transformation

LY LY
W | Iz &
éé_l_l_,' - 3All,‘ (19)
de of,
is given by
¢ _dp
a1 & 3
J il a8 9 20)
; ¥
where
[J|=det J.
From eqns (20) and (17)
o N _, N,
41 * a¢ * 3
e 2 | .
* & e 3

A repeated greek suffix is understood to be summed over the values 1,2,3,4.

The unknown crack opening Au(£,, &) are approximated over the surface element by the
polynomials N,(¢,, &) as

Auft, &)= ;_:. N.(&, E)Au" 22)

where Au® are unknown values of the crack opening at the ath nodal point of the surface
element. By using this approximation the system of the integral equations is converted into a

system of a algebraic equations for the crack opening at all the nodal points on the crack
surface.
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From egns (19}, 21) and (22)

0 0
IAu;
39 | = Dapbuf| ¢ 3)
6‘&&; i'n
d¢ ~ Y

where

o INo 3Ny _aN, oN

° =3k o 9k o )
Finally, from (16) and (23)
=L pep,s
Auu, = Lﬂ B* Au,' (25)
where the vector B,? takes the form
& \
By Qs ccsacasw-ﬁqm
D sin (26)
3 -
B, P @, cosdsind -9, £l
sin &
B}ﬁ —P, sin 9.

The integration element dS, = p? sin 9 d9 dg is changed into p? sin 9|J} d¢, d&;by 9, ¢ = £, &. At
last, the integral equations (13) may be rewritten as

r,(e,¢)=§7’:—=é~9§§ {Au,ﬁ* f‘. f‘l (‘%)Zsin 94v8,Q5 1.k

+{(1=-20)(Q0r, + Qgﬂp + Ssngkka +8,,Qfir)

30 (QBer + QB dE, d&}N @

where { }y designates that the expression in brackets is taken for the Nth surface element,

Qfi = ni(8, 9)BP(8, 0) — n(8, ) BE(S, ) 28)

r.tp, n, 4, ¢ are given by the equations (15) and (17) and any repeated latin suffix is
understood to be summed over the values 1,2, 3, while greek one over, 1,2,3, 4,

4. CRACK CURVED IN THE SHAPE OF A PART
OF CYLINDRICAL SURFACE

In this section the boundary integral equations (13) are rewritten approximately into a
system of algebraic equations for the unknown crack opening at any nodal point on the surface,
S?,, of the crack shown in Fig. 2. Cylindrical coordinates (p, ¢, z) are appropriate to use for the
integration over S}, Then, Descartes coordinates of any point n € S¢, are given by

HM=pCosy
N = psing (29)

=2
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Fig. 2. The crack curved in the shape of a cylindrical surface.

where
m + m? = p’ = const, ¢ € (~@y; o), 2 € (~2p, Z0).

The Descartes components of the gradient of the crack opening Au;.(n), defined on the crack
surface, can be expressed through dAu/de and dAu/dz by the transformation matrix A(g, 2)

Ag, "§‘l'l:;£ 0
A= A, 93-?1 0 (30)
A, 0 1
as
Au“ 0
Ay
Au; | =A| 3¢ | 31
aAu,-

Let us denote the cylindrical coordinates of the point £ € § as (p, 4, Z). Then we have

r=|¢~n|= pl(cos ¢ —cos ¢)} +(sin ¢ —sin ¢)* + (Z - 2)’1p"]'"*

Y kO - g i L2
r; ; p (cos ¢ —cos ¢, sin ¢ —sin ¢, P ) (32)
n(e) = (cos ¢, sin ¢, 0)
dS, =pdedz

Inserting the expressions (31) and (32) in eqn (13), we obtain the integral equations in which all
quantities depend on two variables ¢, z. Since the BEM is to be used to solve these boundary
integral equations, the change of variables

9= Eﬂ N.(&, &)e.

4
zZ= azsl Na(fl! fl) 2y
£h£2€<_|; 1) (33)

is useful. As in the previous section, ¢, and z, are coordinates of the ath nodal point of the
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surface element, ¢ and z are coordinates of any inner point of this element, and N, (&, &) are
given by the equation {18). Now the matrix

o _a
SR U B S 3
& 9
yields the transformation
éég_j_ Bé\ui
dp _ | 9
adu | 7\ 28w, %
3z 353
From eqns (34) and (33)
2 _a_IiaA - Q.NQ.
=L | T T (36)

Ml , N N
% 3E,  PaE,

where the summation convection is understood.
The unknown crack opening displacement Ay, &) are approximated according to egn
{22). The equations {36) and (22) convert the transformation relation (35) into

0 0
dAu; | _ DAuf ;
I ] * 37
aAui
az f “(Pu !
where
D,y = Ma 2y _aNe N,

Finally, from eqns (30, (31) and (37)

o= 8 3
Auy = l” By Au, (38)
where
B, 7, 8in @
Bf) =—28| z,cos¢ (39)
Bls ~PPa

Eventually, the equation (13) yields the system of algebraic equations for all Au

16.2- g2 @5 (e [ [ (2) om0t

+ (l - 2”)(09}’}! + Q;lr,p + al\karvk + spiQﬁrsk) (40}

3, Qbru + Qir,)idé dgz} y
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where
Qjﬂk = "i(¢)8k‘(¢’ 2)- "k(‘P)BIp(¢’ z7)

r.» fip, n, @, z are given by (32) and (33), and any repeated latin suffix is understood to be
summed over the values 1,2, 3, while greek one over 1,2,3, 4.

5. SPHERICAL CRACK OF CIRCULAR CONTOUR UNDER
AN AXIALLY-SYMMETRIC LOADING

Now, the system of algebraic equations, which can be used for numerical calculation of
crack opening at all the nodal points of the spherical crack under an axial symmetric loading,

4(6, 4) oo =1(8, $)ls;, = dusts(6) (42)

r

is derived.

According to the geometrical and physical symmetry the problem is axially symmetric.
Considering this symmetry, the problem is reduced to quasi-1-dimensional problem. Though this
type of loading is included in more general problem, Sect. 3 deals with, we shall solve this
problem considering its symmetry.

According to axial symmetry, we can write

Auld, ¢) = Au(d)cos ¢
Auy(d, ) = Au() sin ¢
Auy(9, @) = Auy(8) 43)

where Au(3) = Auy($,0) and Au(0) = 0.

The unknown crack opening displacements Au(9) and Auy(9) are to be calculated numeri-
cally. Consequently, n nodal points 9,(a = 1,2,... n) are chosen in the interval 3 € (0: 8,). Thus,
one obtains n — | elements on the arc p = const, ¢ = const =0. The ath element lies between the
ath and « + Ist nodal points. The crack opening displacements Au® and Au;” are linearly
approximated, within the ath element, by

Aut(®) = (Au""" - Au®)E + Au® (44a)
Au;"(ﬂ) = (A?“ - Au;a)f + Au;“ (44b)
where
3-3,
=g o fE@

The gradients of the crack opening can be written by eqns (16), (43) and (44) as

+1
Aui" -Au”s Ci

(Auy)* = Sari— Y, psind

45)

where both the suffixes i and a are not understood to be summed, and vectors C5 are given by

cos & cos” ¢ sin @ + £(9,., — 8,) sin ¢

Cn
crz) = [ cos 8 sin & cos ¢ sin ¢ ~ E(Bess - 3,) sin ¢ cos @
ch —sin’ 8 cos ¢

5 cos & sin & sin’ ¢ + £(8,4, - 8,) cos? ¢ (46)

( e ‘cos & sin & sin ¢ ~ &(8,,;— 9,) sin ¢ cos ¢
% —sin’ ¥ sin @

S8 Vol. 19, No. 5D
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3 cos  sin ¢ cos ¢
chj={cosdsindsing |.
ch ~sin’ @

and

Au;" = Aﬁza = Au*
'ﬁ = ﬁa + g(ﬁmﬂ - ﬁa)- (4?}

Combining the expression (45) with the equation (13), one obtains the system of algebraic
equations for Au®, Au,”

(a=12,...,n)

A~

i’fﬂ‘%:- W)= 3 (8w - ) (0)+ 2 (Aus* - Aw) I (6) 48)
where the integrals [°(8), J(8) are given by

o= 3 3 n0of [ (&) ws,0m.

+ (l “‘2V)(Q::r,l + Q?Tﬂp + 5ilQiﬁ(r$k + &pQ}?M)
+ 3’;#’%&(6&’:! + Q?&x&p)} df d‘? {49y

r6)= n,(e of f ) s, Qitr
+({1-20) (Q}p v QI&I rp,+ 5130:17:’& + 5113@?:"'&)
+3rnQhiry+ Q) dEdo (50}
where the notations (46) and (47) are used, and further

Qi = n(3, 0)C ~ m(8, 9)C5

n(w, ¢) = (sin & cos g, sin I sin ¢, cos ) 1

= [(sin 6 — sin ¥ cos ¢)* + sin® 9 sin’ ¢ + (cos 8 —cos $)*"?

i~

= %(sin 6 — sin & cos ¢, —sin 9 sin ¢, cos § ~cos 3)
8 €{0; 9.

Since 1,(8) = t5(8) =0, the condition Au' = Au(0) =0 can be used, and eqn (48) take the form
- n-i
B0 (6) = - 3, Al @~ 17 @)+ Aul (o)
#~1
-Au' JO) ~ X Aw"[JF(9) - JT (O] + Aw"T [ 7(H). (52)
a=2

Once the system of algebraic equations (52) has been solved for the unknown Au?, eqn (10} can
be employed to obtain the displacement field u(x) at any point of the infinite elastic body.

The next application of the obtained crack opening displacement is the calculation of
stress-intensity factors. Kassir and Sih{8] have shown that stress-intensity factors of a
three-dimensional c¢rack with a smooth contour can be evaluated by the relations which are
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Fig. 3. Stress intensity factors K, K;; for a spherical crack under constant loading.

valid for the case of plane strain. Then the stress-intensity factors for spherical crack (Fig. 1)

EVrw Au’u

are given by K, = .
Bven oy B = 8= ) Ve

(3

where Auyy; are the crack opening displacements in the directions I and II calculated at the
point on the normal to the circular contour, and ¢ is the distance of this point from the contour.

The dependence of the stress-intensity factors Ky, normalized to the stress intensity factor,
Kicire, Of penny-shaped crack, on the curvature is shown in Fig. 3 for the spherical crack of circular
contour under a constant loading t,(3) = ¢8;; with & = const, The dependence is the same as in the
case of two-dimensional crack of the shape of circular arc{3].
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APPENDIX
The stress operator may be written in more compact form
Taln,, ) = Caun(x) & (A1)
where
2y
Cis = A8y + u(Buly + 8u5yj), A = = (A2)

Using the apparent relation

a 3
aU.y(y-X)=-3; Uir-x)
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and eqn (A1), eqn (12) may be rewritten as

tl(x) = clp]lci!kl‘"p(x) L “i("l)”;(ﬂ)ar‘al'Ukj(ﬂ - X) dS,, (A3)

where

g=

ani’
The integral (A3) may be decomposed{9] into a sum of surface and line integrals
10 = /(0 + t}x)

where
1(X) = CipjrCigns n,(x)[ x4 3 Uy(n - %) dS, (Ad)

K =[n,(0)d; - n,(m3]u; ()

and the line integral 1(x) equals zero, if the surface S is closed. By differentiation of eqn (3) one obtains

, 1
A Uy(g~-x)= T {3 - 4v)8iiry — 8yrn — 8y + Irurir, ). (AS)
After inserting (A2) and (AS) into (A4) and performing all summations, eqn (A4) takes the form
=t} = iy (x) [ 1 i

wx) =4 (x) 81r(l “N)sn {4V6|Fxlk L

+(1=20)Klpr + Kiry + Py + k5]
+ 3nira(KpeFt + Ki,p)} Sy (A6)
As to the limit behaviour of /(x), when x— { € S, one can use theorems on limit behaviour of derivatives of simple layer

potentials{10]. The continuity of t'(x), when x— ¢ € S, can be shown, provided that ui(n) € C"*(S), 0< a < 1. Then the
integrals in t; () are taken in the sense of the Cauchy principle value.



